Senin, 25 Oktober 2010

Gerak

Gerak lurus
Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.
Pengelompokkan
Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.
Gerak lurus beraturan
Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.
s = v \cdot t \!
dengan arti dan satuan dalam SI:
·                     s = jarak tempuh (m)
·                     v = kecepatan (m/s)
·                     t = waktu (s)
Gerak lurus berubah beraturan
Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.
v = v_0 + a \cdot t \!
s = v_0 \cdot t +  \frac{1}{2} a \cdot t^2 \!
dengan arti dan satuan dalam SI:
·                     v0 = kecepatan mula-mula (m/s)
·                     a = percepatan (m/s2)
·                     t = waktu (s)
·                     s = Jarak tempuh/perpindahan (m)
Gerak jatuh bebas
Gerak jatuh bebas atau GJB adalah salah satu bentuk gerak lurus dalam satu dimensi yang hanya dipengaruhi oleh adanya gaya gravitasi. Variasi dari gerak ini adalah gerak jatuh dipercepat dan gerak peluru.
Rumus umum
Secara umum gerak yang hanya dipengaruhi oleh gaya gravitasi memiliki bentuk:
y = y_0 + v_0 \cdot t + \frac12 g t^2 \!
di mana arti-arti lambang dan satuannya dalam SI adalah
·                     t adalah waktu (s)
·                     y adalah posisi pada saat t (m)
·                     y0 adalah posisi awal (m)
·                     v0 adalah kecepatan awal (m/s)
·                     g adalah percepatan gravitasi (m/s2)
Akan tetapi khusus untuk GJB diperlukan syarat tambahan yaitu:
v_0 = 0 \!
sehingga rumusan di atas menjadi
y = y_0 + \frac12 g t^2 \!
Analogi gerak jatuh bebas
Apabila gerak jatuh bebas adalah gerak yang hanya dipengaruhi oleh gaya gravitasi, dapat dikemukakan gerak jatuh yang mirip akan tetapi tidak hanya oleh gaya gravitasi, misalnya gerak oleh gaya listrik.
GJB dan analoginya

Gerak oleh gaya gravitasi
Gerak oleh gaya listrik
Gaya
F = mg \!
F = qE \!
Percepatan
a = g \!
a = \frac q m E \!
Kecepatan
v = gt \!
v = \left(\frac q m E \right) t\!
Posisi
y = \frac{1}{2} g t^2 \!
y = \frac{1}{2} \left( \frac{q}{m} E \right) t^2 \!
Dengan memanfaatkan kedua gaya yang mirip ini percobaan Millikan dilakukan untuk mengukur muatan elektron dengan menggunakan setetes minyak.

Gerak melingkar

http://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/Circular_motion_diagram.png/180px-Circular_motion_diagram.pngGerak Melingkar adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran

 

Besaran gerak melingkar

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah \theta\!, \omega\!dan \alpha\!atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan r\!, v\!dan a\!.
Besaran gerak lurus dan melingkar
Gerak lurus
Gerak melingkar
Besaran
Satuan (SI)
Besaran
Satuan (SI)
poisisi r\!
sudut \theta\!
kecepatan v\!
kecepatan sudut \omega\!
percepatan a\!
m/s2
percepatan sudut \alpha\!
-
-
perioda T\!
-
-
radius R\!

Turunan dan integral

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.
\int \omega\ dt = \theta \ \ \leftrightarrow\ \ \omega = \frac{d\theta}{dt}
\int \alpha\ dt = \omega \ \ \leftrightarrow\ \ \alpha = \frac{d\omega}{dt}
\int \int \alpha\ dt^2 = \theta \ \ \leftrightarrow\ \ \alpha = \frac{d^2\theta}{dt^2}

Hubungan antar besaran sudut dan tangensial

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui R\!khusus untuk komponen tangensial, yaitu
\theta = \frac{r_T}{R}\ \ , \ \ \omega = \frac{v_T}{R}\ \ , \ \ \alpha = \frac{a_T}{R}
Perhatikan bahwa di sini digunakan r_T\!yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu
r_T \approx |\overrightarrow{r}(t+\Delta t)-\overrightarrow{r}(t)|\!
untuk suatu selang waktu kecil atau sudut yang sempit.

Jenis gerak melingkar

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya \omega\!, yaitu:
·                     gerak melingkar beraturan, dan
·                     gerak melingkar berubah beraturan.

Gerak melingkar beraturan

Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut \omega\!tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial v_T\!dengan jari-jari lintasan R\!
\omega = \frac {v_T} R
Arah kecepatan linier v\!dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial v_T\!. Tetapnya nilai kecepatan v_T\!akibat konsekuensi dar tetapnya nilai \omega\!. Selain itu terdapat pula percepatan radial a_R\!yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.
a_R = \frac {v^2} R = \frac {v_T^2} R
Bila T\!adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran \theta = 2\pi R\!, maka dapat pula dituliskan
v_T = \frac {2\pi R} T \!
Kinematika gerak melingkar beraturan adalah
\theta(t) = \theta_0 + \omega\ t
dengan \theta(t)\!adalah sudut yang dilalui pada suatu saat t\!, \theta_0\!adalah sudut mula-mula dan \omega\!adalah kecepatan sudut (yang tetap nilainya).

Gerak melingkar berubah beraturan

Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut \alpha\!tetap. Dalam gerak ini terdapat percepatan tangensial a_T\!(yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial v_T\!).
\alpha = \frac {a_T} R
Kinematika GMBB adalah
\omega(t) = \omega_0 + \alpha\ t \!
\theta(t) = \theta_0 + \omega_0\ t  + \frac12 \alpha\ t^2 \!
\omega^2(t) = \omega_0^2 + 2 \alpha\ (\theta(t) - \theta_0) \!
dengan \alpha\!adalah percepatan sudut yang bernilai tetap dan \omega_0\!adalah kecepatan sudut mula-mula.

Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:
·                     titik awal gerakan dilakukan (x_0,y_0)\!
·                     kecepatan sudut putaran \omega\!(yang berarti suatu GMB)
·                     pusat lingkaran (x_c,y_c)\!
untuk kemudian dibuat persamaannya.
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan R\!yang diperoleh melalui:
R = \sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2} \!
Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu
x(t) = x_c + R cos(\omega t + \phi_x) \!
y(t) = y_c + R sin(\omega t + \phi_y) \!
dengan dua konstanta \phi_x \!dan \phi_y \!yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai (x_0,y_0)\!, maka dapat ditentukan nilai \phi_x \!dan \phi_y \!:
\phi_x = \arccos \left( \frac{x_0 - x_c}{R} \right)\!
\phi_y = \arcsin \left( \frac{y_0 - y_c}{R} \right)\!
Perlu diketahui bahwa sebenarnya
\phi_x = \phi_y \!
karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui
v  = \sqrt{v_x^2 + v_y^2}
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
v_T  = v = \sqrt{v_x^2 + v_y^2}
dengan
v_x  = \dot{x} = \frac{dx}{dt}
v_y  = \dot{y} = \frac{dy}{dt}
diperoleh
v_x  = -\omega R \sin(\omega t + \phi_x) \!
v_y  = \omega R \cos(\omega t + \phi_x) \!
sehingga
v_T  = \sqrt{(-\omega)^2 R^2 \sin^2(\omega t + \phi_x) + \omega^2 R^2 \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R \sqrt{\sin^2(\omega t + \phi_x) + \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R\!

Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui
a  = \sqrt{a_x^2 + a_y^2}
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
a_T  = a = \sqrt{a_x^2 + a_y^2}
dengan
a_x  = \ddot{x} = \frac{d^2x}{dt^2}
a_y  = \ddot{y} = \frac{d^2y}{dt^2}
diperoleh
a_x  = -\omega^2 R \cos(\omega t + \phi_x) \!
a_y  = -\omega^2 R \sin(\omega t + \phi_x) \!
sehingga
a_T  = \sqrt{(-\omega)^4 R^2 \cos^2(\omega t + \phi_x) + \omega^4 R^2 \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R \sqrt{\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R\!

Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa
\omega \rightarrow \omega(t) = \int \alpha dt = \omega_0 + \alpha t \!
dengan \alpha\!percepatan sudut dan \omega_0\!kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.
Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
x(t) = x_c + R \cos \theta \!
y(t) = y_c + R \sin \theta \!
di mana \theta = \theta(t) \!adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara \theta \!, \omega \!dan \alpha \!melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

Kecepatan sudut

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh
v_x(t) = - R \sin \theta\ \frac{d\theta}{dt} =  - \omega(t) R \sin \theta \!
v_y(t) = R \cos \theta \ \frac{d\theta}{dt} = \omega(t) R \cos \theta \!
dengan
\frac{d\theta}{dt} = \omega(t) = \omega_0 + \alpha\ t \!
Dapat dibuktikan bahwa
v(t) = v_T(t) = \sqrt{v_x^2(t) + v_y^2(t)} = \omega(t) R \!
sama dengan kasus pada GMB.

Percepatan total

Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikan
a_x(t) = - R \cos \theta \ \left( \frac{d\theta}{dt} \right)^2  - R \sin \theta \frac{d^2\theta}{dt^2} \!
a_x(t) = - R \sin \theta \ \left( \frac{d\theta}{dt} \right)^2  + R \cos\theta \frac{d^2\theta}{dt^2} \!
yang dapat disederhanakan menjadi
a_x(t) = - \omega^2 R \cos \theta  - \alpha R \sin \theta \!
a_x(t) = - \omega^2 R \sin \theta  + \alpha R \cos \theta \!
Selanjutnya
a^2(t) = a_x^2(t) + a_y^2(t) = R^2\left(\omega^4(t) + \alpha^2 \right) \!
yang umumnya dituliskan [3]
a^2(t) = a_R^2(t) + a_T^2(t) \!
dengan
a_T = \alpha R \!
yang merupakan percepatan sudut, dan
a_R = \omega^2 R = a_S \!
yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.

Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.
Gerak berubah beraturan
Kecepatan
GLBB
GMB
Besar
berubah
tetap
Arah
tetap
berubah
Gerak vertikal ke bawah
Gerak vertikal ke bawah sangat mirip dengan gerak jatuh bebas, cuma beda tipis… kalau pada gerak jatuh bebas, kecepatan awal benda, vo = 0, maka pada gerak vertikal ke bawah, kecepatan awal (vo) benda tidak sama dengan nol. Contohnya begini… kalau buah mangga dengan sendirinya terlepas dari tangkainya dan jatuh ke tanah, maka buah mangga tersebut melakukan Gerak Jatuh Bebas. Tapi kalau buah mangga anda petik lalu anda lemparkan ke bawah, maka buah mangga melakukan gerak Vertikal Ke bawah. Atau contoh lain… anggap saja anda sedang memegang batu… nah, kalau batu itu anda lepaskan, maka batu tersebut mengalami gerak Jatuh bebas.. tapi kalau batu anda lemparkan ke bawah, maka batu mengalami Gerak Vertikal Ke bawah. Pahami konsep ini baik-baik, karena jika tidak dirimu akan kebingungan dengan rumusnya……..
Karena gerak vertikal merupakan contoh GLBB, maka kita menggunakan rumus GLBB. Kita tulis dulu rumus GLBB ya, baru kita bahas satu per satu……
vt = vo + at
s = vo t + ½ at2
vt2 = vo2 + 2as
Kalau dirimu paham konsep Gerak Vertikal Ke bawah, maka persamaan ini dengan mudah diubah menjadi persamaan Gerak Vertikal Ke bawah.
Pertama, percepatan pada gerak vertikal = percepatan gravitasi ( a = g)
Kedua, ketiga melakukan gerak vertikal ke bawah, kecepatan awal benda bertambah secara konstan setiap saat (benda mengalami percepatan tetap). Karena benda mengalami percepatan tetap maka g bernilai positif.
Ketiga, kecepatan awal tetap disertakan karena pada Gerak Vertikal ke bawah benda mempunyai kecepatan awal.
Keempat, karena benda bergerak vertikal maka s bisa kita ganti dengan h atau y.
Dengan demikian, jika persamaan GLBB di atas diubah menjadi persamaan Gerak Vertikal ke bawah, maka akan kita peroleh persamaan Gerak Vertikal ke bawah sebagai berikut :
vt = vo + gt
h = vo t + ½ gt2
vt2 = vo2 + 2gh
Contoh soal 1 :
Misalnya anda memanjat pohon mangga untuk memetik buah mangga. Setelah dipetik, buah mangga anda lempar ke bawah dari ketinggian 10 meter, dengan kecepatan awal 5 m/s. Berapa kecepatan buah mangga ketika menyentuh tanah ? g = 10 m/s2
Panduan jawaban :
Karena diketahui h, vo dan g, maka kita menggunakan persamaan :
vt2 = vo2 + 2gh
vt2 = (5 m/s)2 + 2(10 m/s2) (10 m)
vt2 = 25 m2/s2 + 200 m2/s2
vt2 = 225 m2/s2
vt = 15 m/s
Contoh soal 2 :
Dari atap rumah, anda melempar sebuah bola ke bawah dengan kecepatan 10 m/s. Jika anda berada pada ketinggian 20 m dari permukaan tanah, berapa lama bola yang anda lemparkan berada di udara sebelum menyentuh permukaan tanah ? g = 10 m/s2
Panduan jawaban :
Untuk menghitung selang waktu yang dibutuhkan bola ketika berada di udara, kita bisa menggunakan persamaan :
vt = vo + gt
Berhubung kecepatan akhir bola (vt) belum diketahui, maka terlebih dahulu kita hitung kecepatan akhir bola sebelum menyentuh permukaan tanah :
Karena diketahui telah diketahui h, vo dan g, maka kita menggunakan persamaan :
vt2 = vo2 + 2gh
vt2 = (10 m/s)2 + 2(10 m/s2) (20 m)
vt2 = 100 m2/s2 + 400 m2/s2
vt2 = 500 m2/s2
vt = 22,36 m/s
Sekarang kita masukan nilai vt ke dalam persamaan vt = vo + gt
22,36 m/s = 10 m/s + (10 m/s2)t
22,36 m/s – 10 m/s = (10 m/s2)t
12,36 m/s = (10 m/s2) t
t = (12,36 m/s) : (10 m/s2)
t = 1,2 sekon
Jadi setelah dilempar, bola berada di udara selama 1,2 sekon.
Gerak Vertikal Ke atas
Setelah pemanasan dengan soal gerak vertikal ke bawah yang gurumuda sajikan di atas, sekarang mari kita bergulat lagi dengan Gerak Vertikal ke Atas. Analisis Gerak Jatuh Bebas dan Gerak Vertikal ke bawah lebih mudah dibandingkan dengan Gerak Vertikal ke atas. Hala… gampang kok… santai saja. Oya, sebelumnya terlebih dahulu anda pahami konsep Gerak Vertikal ke atas yang akan dijelaskan berikut ini.
Gerak vertikal ke atas itu bagaimana ? apa bedanya gerak vertikal ke atas dengan gerak vertikal ke bawah ?
Ada bedanya….
Pada gerak vertikal ke bawah, benda hanya bergerak pada satu arah. Jadi setelah diberi kecepatan awal dari ketinggian tertentu, benda tersebut bergerak dengan arah ke bawah menuju permukaan bumi. Terus bagaimana dengan Gerak Vertikal ke atas ?
Pada gerak vertikal ke atas, setelah diberi kecepatan awal, benda bergerak ke atas sampai mencapai ketinggian maksimum. Setelah itu benda bergerak kembali ke permukaan bumi. Dinamakan Gerak Vertikal Ke atas karena benda bergerak dengan arah ke atas alias menjahui permukaan bumi. Persoalannya, benda tersebut tidak mungkin tetap berada di udara karena gravitasi bumi akan menariknya kembali. Dengan demikian, pada kasus gerak vertikal ke atas, kita tidak hanya menganalisis gerakan ke atas, tetapi juga ketika benda bergerak kembali ke permukaan bumi… ini yang membuat gerak vertikal ke atas sedikit berbeda…
Karena gerakan benda hanya dipengaruhi oleh percepatan gravitasi yang bernilai tetap, maka gerak vertikal ke atas termasuk gerak lurus berubah beraturan. Dengan demikian, untuk menurunkan persamaan Gerak Vertikal ke atas, kita tetap menggunakan persamaan GLBB.
Kita tulis kembali ketiga persamaan GLBB :
vt = vo + at
s = vo t + ½ at2
vt2 = vo2 + 2as
Ada beberapa hal yang perlu kita perhatikan dalam menganalisis Gerak Vertikal ke atas
Pertama, percepatan pada gerak vertikal = percepatan gravitasi ( a = g).
Kedua, ketika benda bergerak ke atas, kecepatan benda berkurang secara konstan setiap saat. Kecepatan benda berkurang secara konstan karena gravitasi bumi bekerja pada benda tersebut dengan arah ke bawah. Masa sich ? Kalau gravitasi bumi bekerja ke atas, maka benda akan terus bergerak ke atas alias tidak kembali ke permukaan bumi. Tapi kenyataannya tidak seperti itu… Karena kecepatan benda berkurang secara teratur maka kita bisa mengatakan bahwa benda yang melakukan gerak vertikal ke atas mengalami perlambatan tetap. Karena mengalami perlambatan maka percepatan gravitasi bernilai negatif.
Kedua, karena benda bergerak vertikal maka s bisa kita ganti dengan h atau y.
Ketiga, pada titik tertinggi, tepat sebelum berbalik arah, kecepatan benda = 0.
Jika persamaan GLBB di atas diubah menjadi persamaan Gerak Vertikal ke atas, maka akan diperoleh persamaan berikut ini :
vt = vo – gt
h = vo t – ½ gt2
vt2 = vo2 – 2gh
Contoh soal 1 :
Sebuah bola dilempar ke atas dan mencapai titik tertinggi 10 meter. Berapa kecepatan awalnya ? g = 10 m/s2
Panduan jawaban :
Ingat ya, pada titik tertinggi kecepatan bola = 0.
Soal ini gampang… karena diketahui kecepatan akhir (vt = 0) dan tinggi (h = 10 m), sedangkan yang ditanyakan adalah kecepatan awal (vo), maka kita menggunakan persamaan :
vt2 = vo2 – 2gh
0 = vo2 – 2(10 m/s2) (10 m)
vo2 = 200 m2/s2
vo = 14,14 m/s
Contoh soal 2 :
Sebuah bola dilemparkan dari tanah tegak lurus ke atas dengan laju 24 m/s.
a)     berapa lama waktu yang dibutuhkan untuk mencapai titik tertingginya ?
b)     berapa ketinggian yang dapat dicapai bola ?
Panduan jawaban :
Sebelum mengoprek soal ini, langkah pertama yang harus kita lakukan adalah mengidentifikasi atau mengenali permasalahan yang dimunculkan pada soal. Setelah itu, selidiki nilai apa saja yang telah diketahui. Selajutnya, memikirkan bagaimana menyelesaikannya. Hal ini penting dalam memilih rumus yang disediakan.
1.                  Berapa lama waktu yang dibutuhkan untuk mencapai titik tertingginya ?
Di titik tertinggi, vy = 0. Pada soal di atas diketahui kecepatan awal vy0 = 24 m/s . Untuk memperoleh t, kita gunakan rumus :
vy = vyo – gt
Rumus ini kita balik, untuk menentukan nilai t (waktu) :

b. berapa ketinggian yang dicapai bola ?
Karena telah diketahui kecepatan awal dan kecepatan akhir, maka kita menggunakan rumus :
vy2 = vyo2 – 2gh
Rumus ini kita balik untuk menghitung nilai h alias ketinggian :
Kerangka Acuan
Apabila kita mengukur posisi, jarak atau kelajuan suatu benda maka kita berpatokan pada suatu kerangka acuan. Misalnya ketika saya berada di atas mobil yang bergerak dengan laju 60 km/jam, sebenarnya saya sedang bergerak di atas permukaan bumi, sehingga kelajuan mobil tersebut berpatokan pada permukaan bumi sebagai kerangka acuan. Atau ketika saya berada di dalam kereta api yang bergerak dengan kelajuan 60 km/jam, saya melihat seorang yang berjalan ke arah saya, misalnya dengan kelajuan 5 km/jam. Laju orang yang berjalan tersebut sebenarnya ditetapkan dengan berpatokan pada kereta api sebagai kerangka acuan, sedangkan laju kereta sebesar 60 km/jam berpatokan pada permukaan bumi sebagai kerangka acuan. Apabila orang tersebut berjalan searah dengan kereta api maka kelajuan orang tersebut 65 km/jam terhadap permukaan bumi sebagai kerangka acuan. Dalam kehidupan sehari-hari, ketika menyebutkan kelajuan suatu gerak benda, maksud kita sebenarnya terhadap permukaan bumi sebagai kerangka acuannya, hanya hal tersebut jarang dikatakan.
Kedudukan alias posisi
Kedudukan yang dimaksudkan di sini tidak sama dengan kata kedudukan yang digunakan dalam kehidupan sehari-hari. “Ayah saya punya pangkat dan kedudukan”… bukan seperti ini. Arti “kedudukan” dalam fisika sedikit berbeda.
Dalam fisika, kedudukan menyatakan posisi atau letak suatu benda (atau manusia) pada suatu saat tertentu terhadap suatu titik acuan. Misalnya sekarang anda berada di rumah. Jika satu jam kemudian anda berada di sekolah, maka kedudukan atau posisimu sudah berubah.
Untuk lebih memahami konsep titik acuan, kedudukan, posisi, jarak dan perpindahan, pelajari pembahasan soal di bawah ini :
Setelah mengeluarkan mobil dari garasi dan menyalakan mesin, ayah mengendarai mobil ke arah utara sejauh 100 meter. Gambarkan perjalanan ayah dalam sumbu koordinat…
Dalam fisika, kita sering menggambar sumbu koordinat untuk menyatakan kedudukan/posisi, jarak, perpindahan atau suatu gerakan tertentu. Biasanya titik 0 pada sumbu koordinat dipilih sebagai titik acuan. Posisi sepanjang sumbu x biasanya dianggap positif jika terletak di sebelah kanan 0 dan negatif jika terletak di sebelah kiri titik 0. Posisi sepanjang sumbu y biasanya dianggap positif jika terletak di atas titik 0 dan negatif bila terletak di bawah titik 0 (Ini hanya merupakan kesepakatan).
Karena ayah memulai perjalanan dari rumah maka kita menganggap rumah merupakan titik acuan. Dalam sumbu koordinat, posisi rumah diwakili oleh titik 0 pada sumbu koordinat. Sesuai dengan arah mata angin, arah utara dianggap sejajar dengan sumbu y positif, arah timur sejajar dengan sumbu x positif, arah selatan sejajar dengan sumbu y negatif, arah barat sejajar dengan sumbu x negatif (lihat gambar di atas).
Salah satu hal yang penting dalam menggambar sumbu koordinat adalah penentuan skala. Anda dapat memiliki skala sesuai dengan selera, tetapi perlu digambarkan secara jelas pada sumbu koordinat.
Sebuah sepeda motor bergerak ke arah timur sejauh 50 meter. Tentukan jarak dan perpindahan total yang dilalui sepeda motor…
Jarak termasuk besaran skalar (besaran skalar = besaran fisika yang hanya mempunyai besar saja. Besaran skalar tidak mempunyai arah). Arah tidak turut mempengaruhi nilai jarak…  Jarak total yang ditempuh sepeda motor = 50 meter
Perpindahan termasuk besaran vektor (besaran vektor = besaran fisika yang mempunyai besar dan arah). Karena termasuk besaran vektor maka arah turut mempengaruhi nilai perpindahan. Perpindahan total yang ditempuh sepeda motor = 50 meter. Arah vektor perpindahan adalah ke timur.
Perhatikan bahwa pada contoh ini jarak = besar perpindahan = 50 meter. Apakah jarak selalu sama dengan besar perpindahan ? cermati contoh soal selanjutnya…
Sebuah sepeda motor bergerak ke arah timur sejauh 100 meter lalu berbalik ke barat sejauh 50 meter. Tentukan jarak total dan perpindahan total yang ditempuh sepeda motor…
Jarak total = 100 m + 50 m = 150 meter
Besar perpindahan total = 100 m – 50 m = 50 meter (perubahan posisi hanya sejauh 50 meter dari posisi awal). Karena perpindahan termasuk besaran vektor maka kita harus menyebutkan arahnya. Arah vektor perpindahan adalah ke timur atau searah sumbu x positif. Vektor perpindahan diwakili oleh tanda panah berwarna biru.
Perhatikan bahwa pada contoh ini jarak tidak sama dengan besar perpindahan… Jarak = 150 meter, sedangkan besar perpindahan = 50 meter.
Sebuah mobil bergerak ke arah utara sejauh 50 meter dan berbalik ke arah selatan sejauh 50 meter. Tentukan jarak total dan perpindahan total yang ditempuh mobil tersebut…
Jarak total = 50 m + 50 m = 100 meter
Bagaimana dengan perpindahan ?
Besar perpindahan total = 50 m – 50 m = 0. Mobil tidak melakukan perpindahan, karena kedudukan atau posisi akhir sama dengan kedudukan atau posisi awal.
Sebuah pesawat, terbang ke arah timur sejauh 400 meter lalu berbelok arah ke utara sejauh 300 meter. Tentukan jarak total dan perpindahan total yang ditempuh pesawat…
Jarak total = 400 m + 300 m = 700 meter
Perpindahan ?
Soal ini tidak seperti soal sebelumnya… kita tidak asal menjumlahkan atau mengurangkan, karena vektor perpindahan tidak segaris. Untuk menghitung besar perpindahan, kita bisa menggunakan rumus phytagoras.
Besar vektor perpindahan = 500 meter. Arah vektor perpindahan bisa ditentukan menggunakan rumus tangen :
Arah vektor perpindahan adalah 30o terhadap sumbu x positif. Perhatikan gambar di atas… vektor perpindahan diwakili oleh gambar berwarna biru… Kelajuan, Kecepatan dan Percepatan
Untuk memahami konsep kelajuan, kecepatan dan percepatan, pelajari pembahasan soal di bawah :
1.                  ”Sebuah mobil bergerak dengan kecepatan 20 km/jam”. Benar atau salah pernyataan ini ?
Terlebih dahulu kita pahami makna kelajuan dan kecepatan. Kelajuan termasuk besaran skalar (besaran skalar = besaran yang hanya mempunyai besar saja). Untuk menyatakan laju atau kelajuan suatu benda, kita tidak membutuhkan arah. Sebaliknya, kecepatan termasuk besaran vektor (besaran vektor = besaran yang mempunyai besar dan arah). Ketika menyatakan kecepatan, kita perlu menyertakan besar dan arah. Untuk membedakan makna kelajuan dan kecepatan, pahami contoh berikut ini.
Pernyataan di atas salah. Jika yang dimaksudkan adalah kecepatan, maka perlu disertakan arah gerak mobil tersebut. Arah gerak mobil bisa dinyatakan dalam sudut, arah mata angin (utara, timur, selatan, barat) atau dengan menggunakan kata ke atas atau ke bawah. Pernyataan di atas bisa diubah seperti ini : ”mobil itu bergerak ke utara dengan kecepatan 20 km/jam” atau ”mobil itu bergerak dengan kecepatan 20 km/jam ke arah utara” atau ”mobil itu bergerak ke utara dengan laju 20 km/jam” atau ”mobil itu bergerak 20 km/jam ke utara”. Pernyataan seperti ini benar, dalam hal ini yang dimaksudkan adalah kecepatan mobil.
Jika tidak ingin menyertakan arah, maka bisa dikatakan ”mobil itu bergerak dengan laju 20 km/jam” atau ”mobil itu bergerak dengan kelajuan 20 km/jam” atau ”mobil itu bergerak 20 km/jam”. Pernyataan seperti ini benar. Dalam hal ini, yang dimaksudkan adalah laju atau kelajuan mobil.
Kelajuan dan kelajuan sesaat memiliki makna yang sama. Ketika menyebutkan kata kelajuan, yang kita maksudkan sebenarnya kelajuan sesaat. Kelajuan atau kelajuan sesaat merupakan perbandingan antara jarak yang sangat kecil dengan selang waktu yang sangat singkat. Dengan kata lain, kelajuan sesaat merupakan jarak yang sangat kecil yang ditempuh selama selang waktu yang sangat singkat. Sebaliknya kelajuan rata-rata merupakan perbandingan antara jarak tempuh total dengan selang waktu total yang diperlukan untuk menempuh jarak tersebut.
Agar lebih memahami perbedaan antara kelajuan atau kelajuan sesaat dengan kelajuan rata-rata, pahami contoh berikut ini. Misalnya anda berangkat ke sekolah menggunakan sepeda motor. Jarak antara sekolah dan rumah = 20 km. Ini Cuma pengandaian saja… Ketika mengendarai sepeda motor dari rumah ke sekolah, anda membutuhkan waktu 1 jam.  Untuk contoh ini, kelajuan rata-rata anda dan sepeda motor adalah 20 km / 1 jam = 20 km/jam. Ini berarti secara rata-rata, anda menempuh jarak 20 km setiap jam. Ini cuma kelajuan rata-rata saja. Tidak mungkin dari rumah sampai di sekolah kelajuan anda selalu 20 km/jam setiap saat. Ketika bertemu kendaraan lain di jalan, anda pasti akan memperlambat sepeda motor, ketika tiba di lampu merah anda akan berhenti, ketika ada orang yang menyebrang jalan, anda memperlambat sepeda motor, ketika jalan sepi, anda kebut2an. Jadi 20 km/jam hanya kelajuan rata-rata. Lalu kelajuan atau kelajuan sesaat anda berapa ? tergantung saatnya kapan… lebih tepatnya bisa anda amati pada speedometer sepeda motormu. Speedometer selalu mencatat kelajuanmu setiap saat. Kadang-kadang jarum speedometer naik, kadang jarum speedometer turun. Kelajuan sesaatmu selalu berubah-ubah setiap saat. Kita juga bisa mengatakan bahwa kelajuan sesaat merupakan kelajuan rata-rata selama selang waktu yang sangat singkat.
Kecepatan dan kecepatan sesaat memiliki makna yang sama. Ketika menyebutkan kata kecepatan, yang kita maksudkan sebenarnya kecepatan sesaat. Kecepatan atau kecepatan sesaat merupakan perbandingan antara Perpindahan yang sangat kecil dengan selang waktu yang sangat singkat. Sebaliknya kecepatan rata-rata merupakan perbandingan antara perpindahan total dengan selang waktu total selama terjadi perpindahan.
Agar anda lebih memahami perbedaan antara kecepatan atau kecepatan sesaat dengan kecepatan rata-rata, cermati contoh berikut ini :
Misalnya anda jalan-jalan menggunakan sepeda motor kesayanganmu. Dari rumah, anda mengendarai sepeda motor ke arah timur sejauh 20 km, lalu kembali lagi ke arah barat sejauh 10  km. Jika lama perjalanan = 1 jam, tentukan kecepatan rata-rata dan kecepatan sesaat anda… Untuk membantumu menentukan kecepatan rata-rata, alangkah baiknya jika perjalananmu di atas digambarkan dalam sumbu koordinat. Perhatikan gambar di samping.
Perpindahan termasuk besaran vektor, karenanya arah turut mempengaruhi nilai perpindahan. Dalam sumbu koordinat, perpindahan bernilai positif jika arahnya menuju sumbu x positif (arah timur) dan sumbu y positif (arah utara). Perpindahan bernilai negatif jika arahnya menuju sumbu x negatif (arah barat) atau sumbu y negatif (arah selatan). Ini hanya kesepakatan saja
Besar kecepatan rata-rata = besar perpindahan / selang waktu total
Besar kecepatan rata-rata = (20 km – 10 km) / 1 jam
= 10 km / 1 jam
= 10 km/jam.
Ini berarti mobil mengalami perpindahan sejauh 10 km setiap jam.
Karena kecepatan rata-rata merupakan besaran vektor maka arah kecepatan rata-rata juga harus dijelaskan… Dalam gambar di atas, vektor kecepatan rata-rata diwakili oleh garis berwarna biru. Arah kecepatan rata-rata = arah perpindahan, yakni ke timur.
Bagaimana dengan kecepatan atau kecepatan sesaat ? tergantung saatnya kapan. Kecepatan sesaat bisa berubah-ubah setiap saat. Kadang yang berubah adalah besar kecepatan, kadang yang berubah adalah arah kecepatan. Kita juga bisa mengatakan bahwa kecepatan sesaat merupakan kecepatan rata-rata selama selang waktu yang sangat singkat.
Ketika kita mengatakan percepatan maka yang kita maksudkan adalah percepatan sesaat. Demikian juga sebaliknya ketika kita mengatakan percepatan sesaat maka yang kita maksudkan adalah percepatan.
Suatu benda dikatakan mengalami percepatan jika kecepatan benda berubah. Kecepatan benda berubah, bisa berarti besar kecepatan alias kelajuan benda berubah atau arah kecepatan benda berubah. Misalnya sebuah mobil mula-mula diam (kelajuannya = 0). Setelah beberapa saat, kelajuannya bertambah menjadi 40 km/jam. Ketika kelajuan mobil bertambah dari 0 menjadi 40 km/jam, mobil tersebut dikatakan mengalami percepatan atau mobil dipercepat. Mungkinkah kelajuan benda konstan tetapi benda tersebut mengalami percepatan ? bisa… dalam hal ini arah kecepatan yang selalu berubah. Mengenai hal ini akan dibahas dalam gerak melingkar.
Ketika kelajuan benda berkurang, kadang kita mengatakan benda tersebut mengalami perlambatan. Misalnya mula-mula kelajuan mobil = 40 km/jam. Setelah beberapa saat, kelajuan mobil berubah menjadi 0 km/jam. Ketika kelajuan mobil berubah dari 40 km/jam menjadi 0 km/jam, mobil tersebut dikatakan mengalami perlambatan atau mobil diperlambat.
Percepatan rata-rata = perubahan kecepatan yang terjadi selama selang waktu total terjadinya perubahan. Sedangkan percepatan sesaat = perubahan kecepatan yang terjadi selama selang waktu yang sangat singkat. Percepatan atau percepatan sesaat juga bisa diartikan sebagai percepatan rata-rata selama selang waktu yang sangat singkat. Agar anda lebih memahami konsep percepatan rata-rata dan percepatan sesaat, cermati contoh di bawah.
Contoh 1 :
Sebuah mobil yang sedang bergerak ke timur pada lintasan lurus mengalami perubahan kelajuan dari keadaan diam hingga mencapai 40 km/jam selama 4,0 detik. Tentukan percepatan rata-rata mobil tersebut !
Besar percepatan rata-rata mobil = 10 km/jam per sekon. Ini berarti, secara rata-rata, kelajuan mobil bertambah 10 km/jam setiap sekon. Jika kita menganggap besar percepatan sesaat selalu konstan maka setelah detik pertama, kelajuan mobil bertambah menjadi 10 km/jam, setelah detik ke dua kelajuan mobil bertambah menjadi 20 km/jam. Setelah detik ke tiga kelajuan mobil bertambah menjadi 30 km/jam. Setelah detik ke empat kelajuan mobil bertambah menjadi 40 km/jam. Jika besar percepatan sesaat tidak konstan maka mungkin saja setelah detik pertama kelajuan mobil bertambah menjadi 11 km/jam, setelah detik kedua kelajuan mobil bertambah menjadi 19 km/jam.. dan seterusnya. Jadi kelajuan mobil tidak selalu bertambah 10 km/jam setiap sekon seandainya besar percepatan sesaat tidak konstan.
Arah percepatan sama dengan arah kecepatan, yakni ke ke timur.
Contoh 2 :
Sebuah mobil bergerak ke timur pada lintasan lurus dengan kelajuan 40 km/jam. Jika setelah 4,0 detik mobil tersebut berhenti, tentukan percepatan rata-rata mobil tersebut !
Tanda negatif muncul karena kelajuan akhir lebih kecil dari kelajuan awal. Tanda negatif menunjukkan bahwa mobil mengalami perlambatan (kelajuan mobil berkurang).

Besar perlambatan rata-rata mobil = -10 km/jam per sekon. Ini berarti secara rata-rata, kelajuan mobil berkurang.

Gerak Jatuh Bebas (GJB)

Dalam kehidupan sehari-hari, kita sering melihat atau menemui benda yang mengalami gerak jatuh bebas, misalnya gerak buah yang jatuh dari pohon, gerak benda yang dijatuhkan dari ketinggian tertentu atau bahkan gerak manusia yang jatuh dari atap rumah. mengapa benda mengalami gerak jatuh bebas ? Gerak Jatuh Bebas alias GJB merupakan salah satu contoh umum dari Gerak Lurus Berubah Beraturan. Apa hubungannya ? silahkan dibaca terus, selamat belajar jatuh bebas, selamat belajar pokok bahasan Gerak Jatuh Bebas. Semoga Tuhan Yang Maha Kuasa selalu menyertai anda, sehingga tidak pusing, masuk angin atau mual-mual selama proses pembelajaran ini….
Apa yang anda amati ketika melihat benda melakukan gerak jatuh bebas ? misalnya ketika buah mangga yang sangat enak, lezat, manis dan bergizi jatuh dari pohonnya. Biasa aja… Jika kita amati secara sepintas, benda yang mengalami gerak jatuh bebas seolah-olah memiliki kecepatan yang tetap atau dengan kata lain benda tersebut tidak mengalami percepatan. Kenyataan yang terjadi, setiap benda yang jatuh bebas mengalami percepatan tetap. Alasan ini menyebabkan gerak jatuh bebas termasuk contoh umum GLBB. Bagaimana membuktikan bahwa benda yang mengalami gerak jatuh bebas mengalami percepatan tetap ? secara matematis akan kita buktikan pada pembahasan Penurunan persamaan Jatuh Bebas.
Lakukanlah percobaan berikut ini. Tancapkan dua paku di tanah yang lembut, di mana ketinggian kedua paku tersebut sama terhadap permukaan tanah. Selanjutnya, jatuhkan sebuah batu (sebaiknya batu yang permukaannya datar) dengan ketinggian yang berbeda pada masing-masing paku. Anda akan melihat bahwa paku yang dijatuhi batu dengan ketingian lebih tinggi tertancap lebih dalam dibandingkan paku yang lain. hal ini menunjukkan bahwa adanya pertambahan laju atau percepatan pada gerak batu tersebut saat jatuh ke tanah. Semakin tinggi kedudukan batu terhadap permukaan tanah, semakin besar laju batu tersebut saat hendak menyentuh permukaan tanah. Dengan demikian, percepatan benda jatuh bebas bergantung pada ketinggian alias kedudukan benda terhadap permukaan tanah. Di samping itu, percepatan atau pertambahan kecepatan benda saat jatuh bebas bergantung juga pada lamanya waktu. benda yang kedudukannya lebih tinggi terhadap permukaan tanah akan memerlukan waktu lebih lama untuk sampai pada permukaan tanah dibandingkan dengan benda yang kedudukannya lebih rendah. Anda dapat membuktikan sendiri dengan melakukan percobaan di atas. Pembuktian secara matematika akan saya jelaskan pada penurunan rumus di bawah.
Pada masa lampau, hakekat gerak benda jatuh merupakan bahan pembahasan yang sangat menarik dalam ilmu filsafat alam. Aristoteles, pernah mengatakan bahwa benda yang beratnya lebih besar jatuh lebih cepat dibandingkan benda yang lebih ringan. Pendapat aristoteles ini mempengaruhi pandangan orang-orang yang hidup sebelum masa Galileo, yang menganggap bahwa benda yang lebih berat jatuh lebih cepat dari benda yang lebih ringan dan bahwa laju jatuhnya benda tersebut sebanding dengan berat benda tersebut. Mungkin sebelum belajar pokok bahasan ini, anda juga berpikiran demikian. Ayo ngaku…..
Misalnya kita menjatuhkan selembar kertas dan sebuah batu dari ketinggian yang sama. Hasil yang kita amati menunjukkan bahwa batu lebih dahulu menyentuh permukaan tanah/lantai dibandingkan kertas. Sekarang, coba kita jatuhkan dua buah batu dari ketinggian yang sama, di mana batu yang satu lebih besar dari yang lain. ternyata kedua batu tersebut menyentuh permukaan tanah hampir pada saat yang bersamaan, jika dibandingkan dengan batu dan kertas yang kita jatuhkan tadi. Kita juga dapat melakukan percobaan dengan menjatuhkan batu dan kertas yang berbentuk gumpalan.
Apa yang berpengaruh terhadap gerak jatuh bebas pada batu atau kertas ? Gaya gesekan udara ! hambatan atau gesekan udara sangat mempengaruhi gerak jatuh bebas. Galileo mendalilkan bahwa semua benda akan jatuh dengan percepatan yang sama apabila tidak ada udara atau hambatan lainnya. Galileo menegaskan bahwa semua benda, berat atau ringan, jatuh dengan percepatan yang sama, paling tidak jika tidak ada udara. Galileo yakin bahwa udara berperan sebagai hambatan untuk benda-benda yang sangat ringan yang memiliki permukaan yang luas. Tetapi pada banyak keadaan biasa, hambatan udara ini bisa diabaikan. Pada suatu ruang di mana udara telah diisap, benda ringan seperti selembar kertas yang dipegang horisontal pun akan jatuh dengan percepatan yang sama seperti benda yang lain. Ia menunjukkan bahwa untuk sebuah benda yang jatuh dari keadaan diam, jarak yang ditempuh akan sebanding dengan kuadrat waktu. Kita dapat melihat hal ini dari salah satu persamaan GLBB di bawah. Walaupun demikian, Galileo adalah orang pertama yang menurunkan hubungan matematis.
Sumbangan Galileo yang khusus terhadap pemahaman kita mengenai gerak benda jatuh, dapat dirangkum sebagai berikut :
Pada suatu lokasi tertentu di Bumi dan dengan tidak adanya hambatan udara, semua benda jatuh dengan percepatan konstan yang sama.
Kita menyebut percepatan ini sebagai percepatan yang disebabkan oleh gravitasi pada bumi dan memberinya simbol g. Besarnya kira-kira 9,8 m/s2. Dalam satuan Inggris alias British, besar g kira-kira 32 ft/s2. Percepatan yang disebabkan oleh gravitasi adalah percepatan sebuah vektor dan arahnya menuju pusat bumi.
Persamaan Gerak Jatuh Bebas
Selama membahas Gerak Jatuh Bebas, kita menggunakan rumus/persamaan GLBB, yang telah dijelaskan pada pokok bahasan GLBB (dibaca dahulu pembahasan GLBB biar nyambung). Kita pilih kerangka acuan yang diam terhadap bumi. Kita menggantikan x atau s (pada persamaan glbb) dengan y, karena benda bergerak vertikal. Kita juga bisa menggunakan h, menggantikan x atau s. Kedudukan awal benda kita tetapkan y0 = 0 untuk t = 0. Percepatan yang dialami benda ketika jatuh bebas adalah percepatan gravitasi, sehingga kita menggantikan a dengan g. Dengan demikian, persamaan Gerak Jatuh Bebas tampak seperti pada kolom kanan tabel.
Penggunaan y positif atau y negatif pada arah ke atas atau ke bawah tidak menjadi masalah asal kita harus konsisten selama menyelesaikan soal.
Pembuktian Matematis
Pada penjelasan panjang lebar di atas, anda telah saya gombali untuk membuktikan secara matematis konsep Gerak Jatuh Bangun, eh Gerak Jatuh Bebas bahwa massa benda tidak mempengaruhi laju jatuh benda. Di samping itu, setiap benda yang jatuh bebas mengalami percepatan tetap, semakin tinggi kedudukan benda dari permukaan tanah, semakin cepat gerak benda ketika hendak mencium tanah. Demikian pula, semakin lama waktu yang dibutuhkan benda untuk jatuh, semakin cepat gerak benda ketika hendak mencium batu dan debu.
Sekarang, rumus-rumus Gerak Jatuh Bebas yang telah diturunkan diatas, kita tulis kembali untuk pembuktian matematis.
vy = vyo + gt  —— Persamaan 1
y = vyot + ½ gt2 —— Persamaan 2
vy2 = vyo2 + 2gh —— Persamaan 3
(sory, baru lupa… embel-embel y di belakang v hanya ingin menunjukan bahwa benda bergerak vertikal atau benda bergerak pada sumbu y, bila kita membayangkan terdapat sumbu kordinat sepanjang lintasan benda. Ingat lagi pembahasan mengenai titik acuan)
Amati rumus-rumus di atas sampai puas. Ini perintah Jenderal, ayo dilaksanakan. Kalo bisa sampai matanya bersinar….
Pembuktian Nol
Setelah mengamati rumus di atas, apakah dirimu melihat lambang massa alias m ? karena tidak ada, maka kita dapat menyimpulkan bahwa massa tidak ikut bertanggung jawab dalam Gerak Jatuh Bebas. Setuju ya ? jadi masa tidak berpengaruh dalam GJB.
Pembuktian Pertama
vy = vyo + gt  —— Persamaan 1
Misalnya kita meninjau gerak buah mangga yang jatuh dari tangkai pohon mangga. Kecepatan awal Gerak Jatuh Bebas buah mangga (vy0) = 0 (mengapa bernilai 0 ? diselidiki sendiri ya….) Dengan demikian, persamaan 1 berubah menjadi :
vy =  gt
Melalui persamaan ini, dapat diketahui bahwa kecepatan jatuh buah mangga sangat dipengaruhi oleh percepatan gravitasi (g) dan waktu (t). Karena g bernilai tetap (9,8 m/s2), maka pada persamaan di atas tampak bahwa nilai kecepatan jatuh benda ditentukan oleh waktu (t). semakin besar t atau semakin lamanya buah mangga berada di udara maka nilai vy juga semakin besar.
Nah, kecepatan buah mangga tersebut selalu berubah terhadap waktu atau dengan kata lain setiap satuan waktu kecepatan gerak buah mangga bertambah. Percepatan gravitasi yang bekerja pada buah mangga bernilai tetap (9,8 m/s2), tetapi setiap satuan waktu terjadi pertambahan kecepatan, di mana pertambahan kecepatan alias percepatan bernilai tetap. Alasan ini yang menyebabkan Gerak Jatuh Bangun termasuk GLBB.
Pembuktian Kedua
Sekarang kita tinjau hubungan antara jarak atau ketinggian dengan kecepatan jatuh benda
vy2 = vyo2 + 2gh —— Persamaan 3
Misalnya kita meninjau batu yang dijatuhkan dari ketinggian tertentu, di mana batu tersebut dilepaskan (bukan dilempar ke bawah). Jika dilepaskan maka kecepatan awal alias v0 = 0, seperti buah mangga yang jatuh dengan sendirinya tanpa diberi kecepatan awal. Jika batu tersebut dilempar, maka terdapat kecepatan awal. Paham ya perbedaannya….
Karena vy0 = 0, maka persamaan 3 berubah menjadi :
vy2 = 2gh
Dari persamaan ini tampak bahwa besar/nilai kecepatan dipengaruhi oleh jarak atau ketinggian (h) dan percepatan gravitasi (g). Sekali lagi, ingat bahwa percepatan gravitasi bernilai sama (9,8 m/s2). Karena gravitasi bernilai tetap, maka nilai kecepatan sangat ditentukan oleh ketinggian (h). semakin tinggi kedudukan benda ketika jatuh, semakin besar kecepatan benda ketika hendak menyentuh tanah. setiap satuan jarak/tinggi terjadi pertambahan kecepatan saat benda mendekati tanah, di mana nilai pertambahan kecepatan alias percepatannya tetap.
Contoh soal :
Sebuah batu bermassa 2 kg dilepaskan dari keadaan diam dan jatuh secara bebas. Tentukan posisi dan laju batu tersebut setelah bergerak 1 s, 5 s dan 10 s.
Panduan jawaban :
Anda harus mengidentifikasi atau mengecek masalah pada soal ini terlebih dahulu sebelum menyelesaikannya. perhatikan bahwa yang ditanyakan adalah kedudukan dan laju batu setelah dijatuhkan sekian detik. Setelah anda berhasil mengidentifikasi masalahnya, selanjutnya anda memutuskan untuk menggunakan solusi alias cara pemecahan yang seperti apa. Tersedia 3 rumus yang dapat anda gunakan. Pakai yang mana ?
vy = gt
y = ½ gt2
vy2 = 2gh
Massa benda tidak berpengaruh, karenanya jangan terkecoh dengan soal yang menyertakan massa benda….